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Abstract
Conventional techniques for measuring the volumetric

errors of Cartesian coordinate machine tools are time con-
suming using a laser interferometer or step gauges. For
multiaxis machines, where the spindle can swing, volumetric
error calibration is even more difficult. In this study, a novel 3D
laser ball bar (3D-LBB) has been developed for the easy
setup and rapid measurement of the tool position relative to
the worktable at any working point of multiaxis machines. The
instrument makes use of one laser ball bar and two rotary
laser encoders to detect the target path in the spherical coor-
dinate system. The design of the instrument is discussed, and
the error attributes are analyzed to enhance the instrument’s
accuracy. Applications to the volumetric error measurement
of a robot and two types of machine tools have demonstrated
the high-precision capability of this 3D laser ball bar.

Keywords: 3D Laser Ball Bar, Accuracy Calibration, Volu-
metric Errors, Multiaxis Machines

Introduction
Techniques for performing accuracy testing of

CNC machine tools can be found in many standards,
such as ISO 230 or ASME B5.54 (1993). Most of
the existing linear measurement instruments are one
dimensional, such as a laser interferometer or step
gauge. For the circular test of 2-D motion, as speci-
fied in ISO 230-4 (1998), some instruments have
been developed, such as the double ball bar (DBB)
(Bryan 1982), Contisure (Burdekin and Jwye 1992),
and the latest laser ball bar (LBB) (Ziegert and Mize
1994, Schmitz and Ziegert 2000). Although these
instruments are capable of two-axis error measure-
ments, they are still sensitive to one dimension only.

For the measurement of volumetric errors of ma-
chine tools, most methods detect 21 component er-
rors and then use the homogeneous transformation
matrix (HTM) method or kinematic analysis method
(Soons, Theuws, and Schellenkens 1992) to derive
the spatial errors off-line. Wang (2000) follows the
ASME B5.54 standard to measure volumetric errors
directly. The standard employs a laser Doppler dis-
placement meter (LDDM) and a large, flat mirror to
measure four body diagonals, and assesses volumet-
ric errors using the vector method. The standard is
time saving but only valid for traditional, serial-type
CNC machines. Hexapod machine tools have re-
ceived a great deal of attention due to their flexibil-
ity in five-axis movement (Patel and Ehmann 1997).
However, owing to the spindle swing in the pitch
and yaw directions, more sensors are needed to make
the volumetric motion measurement possible (Parenti
and Gregorio 1999). In practice, however, this equip-
ment is too expensive to be implemented in indus-
try. So far, there are some good laser tracking
systems (LTSs) designed in spherical coordinate sys-
tems that can directly detect 3D motion error (API
2002). These systems must be operated in an active
way, which requires feedback sensors and servo
control to track the moving target in real time. These
systems require very fast control systems, resulting
in higher cost.

A novel design that integrates the merits of a LBB
and LTSs is proposed in this research for the three-
dimensional measurement of moving objects in real
time. The system, called the 3D Laser Ball Bar (3D-
LBB), is based on the spherical coordinate principle
containing only one precision laser linear measure-
ment device and two precision laser rotary encoders
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in the gimbal base with an extendable ball bar. Such
a system can be dragged by any 3D moving target
with a magnetic head and freely moved in the space.
Three sensors simultaneously record the ball posi-
tions and transform into the Cartesian coordinate in
real time. Having been calibrated by a HP laser in-
terferometer, the system accuracy can be compen-
sated and enhanced to a higher degree. As this system
is operated in the passive mode in 3D space, the
cost is inexpensive.

Design Principle of 3D Laser Ball Bar
(3D-LBB)

Structure Design
Figure 1 illustrates the system configuration of the

3D-LBB. The system is constructed in a spherical
coordinate of which the center of the gimbal mount
is the origin (O). Mounted onto the gimbal center is
an extendable telescoping tube (made of aluminum
alloy and hardened in the interior surface) that can be
designed in two or three sections depending on the
required radial length of motion. Between the inner
and outer tubes of a sliding pair is one linear bearing
mounted at the far end of the outer tube and a copper
sliding bearing fixed at the near end of the inner tube
to prevent side motion during bar extension.

The movement of the 3D-LBB is generated by
the precision end ball, which can be dragged by a
magnetic socket carried by any moving object. The
radial motion (R) of the ball is detected by a small-

sized laser linear measurement system whose beam
passes through the telescope tubes and is reflected
back by a reflector at the bar end. A conical stainless
steel piece connecting the reflector and the ball al-
lows a wider angle of rotation between the magnetic
socket and the ball. The laser linear system is re-
quired to be as small as possible to reduce the sys-
tem weight. This design was, therefore, changed to
a compact laser Doppler scale (LDS, model 109N,
made by Optodyne Co.) with wavelength stability
to 0.1 ppm and system accuracy to 1.0 ppm.

The pitch (�) and the yaw (�) motions of the bar
with respect to the gimbal base are detected by two
precision laser rotary encoders (model K-1, made
by Canon Co.) individually. Each encoder has very
fine scales of 81,000 ppr. With an additional 16-di-
vision interpolator board (model 16-2), the resolu-
tion can reach one arc-sec.

Coordinate Transformation
To obtain the tool-point Cartesian coordinates, the

equations of coordinate transformation can be eas-
ily derived as shown in Figure 2.

cos sin

cos cos

sin

X R

Y R

Z R

= θ φ⎫
⎪= θ φ⎬
⎪= θ ⎭

(1)

where R = R0 + r. R0 is the initial length of the bar,
which is obtained during the initialization process,
as explained in a later section, and r is the extended
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length. Figure 3 shows the picture of the developed
prototype 3D-LBB. The nominal physical dimen-
sions of this prototype are: gimbal base diameter 150
mm, gimbal center height 300 mm, initial R length
142 mm, and moving length of telescope tubes 550
mm. To balance the weight while the telescope tube
is extending, a counterweight balancer is mounted
onto the base tube near the origin. Moreover, for
ease of beam alignment, a four-axis adjustable stage
is especially made for laser mounting.

Accuracy Considerations
As an instrument for spatial position measurement,

the system must be more accurate than the inspected
multiaxis machine itself. Error sources, therefore,
must be identified and properly calibrated to improve
the instrument’s system accuracy.

Clearance Error of Tubes

As shown in Figure 4a, under improper fit of
the linear bearing a small amount of clearance may
generate side motion during the extension of the
inner tube.

The angle of rotation can be estimated by tan� =
2C/L, where C denotes clearance and L indicates
bearing length. In this study, a copper spacer was
designed to give interference fit with the end of the
inner tube and precise fit with the outer tube. Under
good lubrication, the copper spacer can freely slide
along the outer tube as a slide bearing. Because in

practice the linear bearing and tubes have to be se-
lected from standard items in the shop, a possible
clearance even after minor machining still cannot
be avoided. The copper spacer, however, can be self-
made to assure minimum clearance. Therefore, even
at the maximum extension condition, as shown in
Figure 4b, the loose motion of the inner tube must
be much smaller than before.

Assembly Errors

To modify the measurement inaccuracy, geomet-
ric assembly errors should be superimposed to Eq.
(1). These include the axes perpendicularity and the
axes offset with respect to the origin (O) of the refer-
ence frame XYZ. These errors are illustrated in Fig-
ures 5–7, respectively.

As shown in Figure 5, the perpendicularity error
(�) of the �-axis with respect to the Z axis can be
checked by a CMM and computed as

Figure 3
Prototype of 3D-LBB

(a)

(b)

Figure 4
Clearance Error: (a) caused by linear bearing,

(b) corrected by a copper bearing.
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arctan
h

L

∆α = (2)

where �h is the difference of the height of two bear-
ing centers and L is the distance between two bear-
ing supports. The measurement can be carried out
before mounting the shaft and the encoders. The
measured inner ring surface should be as close to
the outside wall as possible. The length L is deter-
mined by the distance between the two outside walls
of the bearing supports. Another way is to measure
the wobble of the rotary disk. Placing a dial gauge at
100 mm radial position and rotating the disk a full
circle, the height change of the disk surface could
be found. Using Eq. (2), the perpendicularity error
(�) is obtained.

From Figure 6, the perpendicularity error (�) of
the bar with respect to the �-axis also can be checked
by the CMM. The origin O1 indicates the intersec-
tion of the �-axis and R-axis. From Figure 7a, in the
X-Y plane there is an offset error (a, b) of origin O1

with respect to origin O of the �-axis. The (a, b)
offset could be found by the following procedures:

1. Use a roundness measuring machine to mea-
sure the central circle of the rotary disk and
find the offset (a1, b1) of center Oo with respect
to the rotation center O (refer to Figure 5).

2. Use the CMM to find the offset (a2, b2) of the
disk center Oo with respect to the origin O1.

3. Therefore, a = a2 – a1, b = b2 – b1.

Then, in the Z-direction, the deviation c (see Fig-
ure 7b) can be calculated as

c = a tan � + e cos � (3)

where e is the center offset of the bar axis with re-
spect to the �-axis along the Z1 direction.

Experimental tests were conducted on the proto-
type 3D-LBB. All the assembly errors could thus be
identified as listed in Table 1.

Because a, b, c, �, and � are constant assembly
errors, these factors must be added to the system
mechanism, and Eq. (1) has to be modified accord-
ingly. To derive the actual measurement equations,
two relative coordinate frames are of interest, as
shown in Figure 8. The reference frame XYZ is fixed
at the base center, with the Z-axis denoting the cylin-
drical base axis. A movable frame X1Y1Z1 is assigned
at the point O1, with X1 parallel to the �-axis and Y1
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parallel to the X-Y plane. Equation (1) can be modi-
fied in terms of the homogeneous transformation
matrix (HTM) as follows:

[ ] [ ] [ ] [ ] [ ] [ ] [ ]oo
b b

O T R= = φ ⋅ ∆ ⋅ α ⋅ β ⋅ θ ⋅ (4)
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where oOb denotes the spatial position of the ball cen-
ter with respect to reference frame XYZ and h is the
actual height of origin O1 of frame X1Y1Z1. Therefore,
the actual ball position in space during motion can be
calculated with the following equation, Eq. (5).
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− φ + φ
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(5)

Elastic Deformation

Elastic deformation due to the moving bar center
and dragging force at the ball is also the essential
factor causing measurement inaccuracy. In this in-
strument, a balance sleeve was added to effectively

reduce the deformation, as shown in Figure 3. The
location and the weight of the balancer are deter-
mined such that, at no magnetic drag, when the bar
is extended to half of the total length it reaches the
equilibrium condition. Experiments showed that
while the bar is extended to its full length or retracted
to its shortest length, the small net force variation
can be easily absorbed by the magnetic socket.

Initialization of the 3D-LBB

The initial length (R0) of the tube has to be identi-
fied with an initialization process. The initialization
device consists of three sockets, as shown in Figure
9. L1 and L2 are the lengths of AB  and AC , respec-
tively. Let point A be the reference point (R = R0, � =
�0, � = �0). The fixed distances of L1 and L2 are cali-
brated in advance by a high-precision CMM. The
initialization procedure is as follows:

1. If the coordinates of each socket are measured,
respectively, as A, B(R0 + �RB, �0 + ��B, �0 +
��B), and C(R0 + �RC, �0 + ��C, �0 + ��C), the
following relations exist.

1

2

BO AO L

CO AO L

− =

− =
(6)

Table 1
Prototype 3D-LBB Assembly Errors
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Substituting each coordinate into Eq. (6) and
simplifying with trigonometric operations, the
following two equations can be obtained.

( )
( )( )

22 2
1 0 0

0 0

2 2

2 cos 1 cos

B B

B B B

L R R R R

R R R

= + ∆ + ∆ −
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C C C
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There is an interesting finding that in these two
equations there is only one variable R0. It means
that only one standard distance is needed to
find the initial bar length. The second standard
distance can be used to double check the cal-
culated R0, which was found to be 142 mm, as
indicated earlier.

2. During the R-direction alignment step, first we
let the precision ball of the 3D-LBB be dragged
with a magnetic socket by the moving axis
along the R direction. Second, we adjusted the
gimbal base to allow for two unchanged en-
coder readings throughout the travel. Then, we
reset the two encoder readings.

3. Then we positioned the artifact in front of the
3D-LBB and let point A be in line with the mov-
ing axis as close as possible. Now we could take
readings of A, B, and C sockets and found R0.

In addition to the geometric errors by assembly
and the elastic deformation as described in the above
sections, there are also other systematic errors that
affect the accuracy of measured R, �, and � data,

such as friction, laser stability and misalignment, clear-
ances of fits, and sensor errors. Therefore, the accu-
racy calibration of the developed 3D-LBB is necessary.
In addition, with the error compensation scheme the
system accuracy can be significantly enhanced.

Calibration of the R Axis

As shown in Figure 10, an HP 5528A laser inter-
ferometer was used to compare with the reading of
the LDS (not shown in the figure). The 3D-LBB was
mounted onto a side table of a table-type CMM. The
standard ball of the 3D-LBB was fixed to the spindle
end with a magnetic socket. The set of corner cube
reflectors and the interferometer cube were mounted
on an extension bar from the spindle end. A pos-
sible Abbe error induced by this setup will be due to
the roll error of the moving spindle. In fact, this roll
error is very small and can be neglected. Bidirec-
tional motion with three runs each was carried out
for calibration. Calibrated results are shown in Fig-
ure 11a. Because the error has an obvious tendency
and repeatability, the R errors can be compensated
by the best-fitting line. The slope of the error ten-
dency is caused by the misalignment of the LDS la-
ser beam with respect to the HP5528 laser beam.
However, the maximum error at the far end is only
about 1.5 µm, which can be reasonably compen-
sated by a curve-fitting technique. The modified R
reading is expressed by Eq. (8). As shown in Figure
11b, after compensation, positioning errors of the
LDS can be maintained within ±0.3 µm.

Rmod = Rr – 4×10–6 Rr – 0.0003 (8)

Figure 9
Artifact for 3D-LBB Initial Length Measurement
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where Rmod is the modified Rr value, which is the
direct reading from the LDS.

Calibration of the � Axis

In this experiment, the bar was carefully aligned
parallel with the X-Y plane and directed to the Y-axis
of a table-type precision CMM, as shown in Figure
12a. The setup was similar to the setup of linear cali-
bration, the only change being that the 3D-LBB
moves to the Y-direction. While the spindle moves in
the X-direction and its position is recorded by the
HP 5528A, the � angle changes in a trigonometric
relationship, as shown in Figure 12b and expressed
by Eq. (9).

2 2 2
0

0

arccos
2

i i
i

i

R R X

R R

⎛ ⎞+ −
φ = ⎜ ⎟

⎝ ⎠
(9)

i ir i∆φ = φ − φ

where �i is the calculated nominal angle at the ith
position and �ir is the actual readout from the verti-
cal encoder.

The calibrated �i errors can be expressed by Eq.
(10). After correction, the � errors can be maintained
within ±1.5 arc-sec, as shown in Figure 13.

( )5
mod 4 10 23.818r r

−φ = φ − − × φ − (10)

where �mod is defined as the modified value and �r

is the readout from the vertical encoder.

Calibration of the � Axis

For calibration of the � axis, the setup and prin-
ciple of calibration are similar to Figure 12 except
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the laser beam is bent to the spindle direction. With
proper alignment, the bar rotates only around the �-
axis. The errors can be found by comparing the �
readouts from the horizontal encoder with values of
Zi from HP and Ri from LDS and calculated using Eq.
(11). Error correction is done by Eq. (12). Residual
errors are about ±1.6 arc-sec, as shown in Figure 14.
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i i
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i

R R Z

R R
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⎝ ⎠
(11)

i ir i∆θ = θ − θ

where �i is the calculated nominal angle and �ir is
the readout from the horizontal encoder.
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−θ = θ − − × θ − (12)

where �mod is the modified value and �r is the read-
out of the horizontal encoder.
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Calibrated � Angular Errors

Compensated 3D-LBB Errors

After correction of the errors, the measurement
accuracy of this instrument is significantly improved.
The compensated system accuracy is listed in Table
2. Repeatability tests were based on the results of
bidirectional motion with three runs each for all of
the above three calibration processes. With careful
assembly and fastening processes, the 3D-LBB can
perform good repeatability. One typical example is
shown in Figure 15 for the � accuracy calibration.
The uncertainties of all calibrated errors in the ±3
sigma band (99.7% certainty) are summarized in the
last column of Table 2.

Applications

Volumetric Error Measurement of a Serial-
Parallel Type Machine Tool

The experimental setup is shown in Figure 16.
The base of the 3D laser ball bar is fixed on the X-Y
table. The end ball is mounted at the spindle end by
a magnetic socket with three points of contact. The
machine tool is of a serial-parallel type consisting of
a 3DOF parallel spindle platform with two angular
orientations and one linear motion in the Z-axis and
a conventional X-Y table, which carries the workpiece.
The spindle is assembled on the platform, which is
connected to three constant-length struts by means
of ball joints, which are equally spaced at 120 de-
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Table 2
Accuracy and Repeatability of 3D-LBB

Coordinate Parameter Range Accuracy Repeatability ±3�

R 500 mm ±0.3 µm 0.21 µm
� 35° ±1.5 in. 1.2 in.
� 25° ±1.6 in. 0.8 in.

Figure 15
Calibration in Yaw Angle Rotation of 3D-LBB
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grees. By giving commands to change two angular
orientations of the spindle platform, the tool tip spa-
tial positions could be measured by the 3D laser ball
bar. Partial experimental results of volumetric errors
are plotted in Figure 17.

Accuracy Calibration and Verification in Diago-
nal Path Measurement

A diagonal path with 12 constant intervals of a
machining center was measured by the 3D-LBB and
an HP interferometer conforming to the ASME B5.54
standard with machine coordinates from (0, 0, 0) to
(312, 324, 128). Measured results are compared in
Figure 18, from which it can be seen that this ma-
chine tool has significant volumetric errors, and the
maximum difference between the 3D-LBB and
HP5528 readouts is about 2.6 µm. This can verify
the applicability of the developed 3D-LBB.

Robot Spatial Position Error Measurement

According to the guideline for robot spatial
path position error calibration (ISO 9283; 1990),
the measuring sequence of a standard spatial
paths P1→P2→P3→P4→P5→P1 is illustrated in
Figure 19.

Experimental results are shown in Figure 20. The
repeatability (6�) of spatial position errors of the in-
vestigated robot is about 0.08 ~ 0.085 mm, which
meets general requirements. The maximum spatial
position error is about 1 mm, which implies that this
robot is only suitable for rugged work.

Conclusions
A novel 3D-LBB system was developed for mea-

suring the volumetric errors of multiaxis machines.
This paper describes how possible errors due to as-

Figure 16
Setup for Accuracy Check of a Serial-Parallel Machine Tool

Figure 17
Diagonal Positioning Error Plot
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sembly, elastic deformation, and calibration pro-
cesses could be found and compensated. For the
current prototype, its accuracy after compensation
is found to be quite promising: �R = ±0.3 µm, �� =
±1.5 arc-sec, and �� = ±1.6 arc-sec. The repeatabil-
ity and verification tests are also reported, which
showed quite satisfactory results. This paper pro-
poses the methodology of design, assembly, and er-
ror correction of a 3D laser ball bar, which has more
flexible and versatile functions than the currently
used laser interferometer and 1-D LBB for the accu-
racy calibration of machine tools. In addition to the
spatial position measurements, this instrument also
can be used to check other kinds of errors in ma-
chine tool metrology, such as circular test,
straightness, spindle drift, and so on.
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Figure 20
Results of a Robot Calibration


